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1. A skeleton for the code in this exercise is available here. 
 

2.  (20 pts) Back propagation 

We use the same train and test data tests from the previous exercise, with the digits ‘5’ and 
‘8’. labels values are now 0 and 1 (for ‘5’ and ‘8’, respectively). 
 
Implement a back-propagation neural network learning algorithm 
a. The network should have the following architecture: 

i. 784 input neurons (the 28*28 pixels) in the input layer (X). 
ii. 150 RELU neurons in one hidden layer (Z). The output value of each of these 

neurons is                      where the index i runs over 785 ɑ weights (one for each 
neuron, and an additional free weight for the bias). 

iii. One sigmoidal output neuron – the classifier (y). Its output value is 
where the index j runs over 150  weights (one for each hidden neuron ).β zj  

b. The error function for the sample i is , and the total error isEi = (y −f )i (x )i
2  
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i
Ei  

c. Coding instruction: The Python fucntion train_model(), provided on the notebook, 
contains a skeleton that takes care of initialization, computing the total error (using the 
function evaluate()) and the main loop. You have to implement the following 
functions that are called from that function: 
1. CalcForwardZ  – compute the activity of the hidden neurons given an input 

sample. 
2. CalcForwardY  – compute the activity of the output neuron given the activity of 

the hidden level. 
3. UpdateWeights  – update the alpha and beta weights using the back-propagation 

algorithm. 
4. Evaluate – calculate the error function and the accuracy of the predictor. 

 
3. (20 pts) A basic back-prop experiment 

Train your network to classify input images into the two classes: the digit ‘5’ and the digit 
‘8’, using the back-propagation algorithm. Use a learning rate of eta = 0.001. Implement the 
back-propagation training algorithm for this network and run it for 50 cycles over the 
training set. Each cycle involves presenting all images to the network and modifying the 
weights accordingly. 
There are two error functions to calculate here – the first is the mean squared error, which is 
the error we are trying to minimize. The second is the number of classification mistakes. 
Since the output unit y is continuous, we classify the inputs by thresholding y:  if  wey > 2

1  
classify it as 1, if  we classify it as 0. Calculate the mean training errors and the meany ≤ 2

1  
test (generalization) errors (both error types) after each cycle, and plot the errors as a 
function of the number of training cycles. Repeat the experiment with 5 different seeds. 
Discuss the results. 
 

4. (40 pts) The effect of hidden layer size (model complexity) 

https://colab.research.google.com/drive/1FUL0hkpHYKC3pbJd5nGqQtDUBFyrQ5UF


The experiment above has three important hyperparameters: (1) the step size eta, (2) the size 
of the hidden layer, and (3) the number of gradient steps. Please read all the questions below 
before you start. 
a. Run the same experiment as above, with 100 gradient steps, and with various values of 

eta (both larger and smaller than the one used above), changing on an exponential scale. 
Report the effects of this change and discuss. 

b. Same as above, only now vary the number of hidden units. Try as little as 2, and as 
many as you dare. Report the effects of this change and discuss. 

c. To avoid over-fitting it could be useful to stop the algorithm early, after a limited 
number of cycles. Choose the number of cycles that produce the lowest test error, and 
stop the algorithm at that stage. If the algorithm takes too long to converge you can just 
stop it arbitrarily and report the results, while indicating that your stopping criteria didn’t 
take effect. 

 


