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Exercise 5

1. (20pts) Multivariate Normal Distributions

a. Read this link discussing visualization of the Multivariate Normal Distributions. Using the code
presented there, plot a bivariate normal distribution with various values of the covariance matrix
Submit 3 different examples.

b. Prove that  for  a bivariate  normal  distribution  N ( μ , Σ ) that  obeys  Σ11=Σ22 , and  Σ12>0,  the

major axis of the ellipse describing the distribution follows the  45 ° line. Also prove that it is

perpendicular to that line ifΣ12<0.

2. (30pts) Principal Component Analysis

a. (20 pts) In this exercise, we prove that the linear projection onto an d-dimensional subspace that

maximizes the variance of the projected data is defined by the top  d  eigenvectors of the data
covariance matrix C (the vectors corresponding to the d largest eigenvalues). The result for the
case of d = 1 was proved in class.

Prove  by  induction:  assume  the  result  holds  for  some  general  value  d ,  and  show  that  it
consequently holds for dimensionality d+1. To do this, first compute the derivative of the total

variance E( y2 of the projected data y ∈ Rd+1 with respect to a vector wd+1 and set it to zero. This

vector defines the new direction in data space. The derivative should be computed subject to the

constraint that wd+1 be orthogonal to the previous eigenvectors vectors w1 ,… ., wd, and also that is

be normalized to unit length. Show that the new vector wd+1 is an eigenvector of C. Finally, show

that  the  variance  is  maximized  if  the  eigenvector  is  chosen  to  be  the  one  corresponding  to

eigenvalue λd+ 1 where the eigenvalues have been ordered in decreasing value.

b. (10 pts) Given an input data x∈ Rn with zero mean, and a linear projection matrix W ( y=Wx )

which projects data onto a d-dimensional subspace, defined by the d  largest eigenvectors of the

covariance  matrix  of  x,  show  that  the  total  variance  E ( y2 )=∑
i=1

d

⟨ y i
2 ⟩ is  invariant  under  an

orthonormal rotation of the axes within that subspace:  W →WO,  where  O is an orthonormal
matrix. Hint: Use the commutative property of the Trace of a matrix trace(AB) = trace(BA) for
any two matrices A, B

https://scipython.com/blog/visualizing-the-bivariate-gaussian-distribution/


3. (50 pts) Word embeddings

In this exercise you will implement the GloVe model and test it on a text corpus. Read the GloVe
paper1, answer the following questions and then follow the implementation instructions below:

a. In  what  sense,  GloVe  is  global  compared  to  CBOW?  What  is  the  disadvantage  of  CBOW
compared GloVe in this respect?

b. Eqn 8 in  the paper describes adding a weighting to the cost function. Explain the problem that
the weighting is aimed to address..

c. Stochastic Gradient Descent (SGD).  Approximate the gradient of the cost function using a single
element of the co-occurrence matrix. You should write explicitly the resulting gradients and the
update rules for all model parameters.

Implementation instructions:
A notebook with a skeleton for your code is available here.

i. We will  use co-occurrence counts  collected from 250,000 sentences  in  Wikipedia.  The
function load_cooccurrences() is used for loading the per-calculated co-occurrence counts.

ii. Training  the  model  with  SGD.  Initialize  all  model  parameters  in  a  new  function
init_vectors(),  then,  at  each  iteration,  sample  a  non-zero  element  of  the  co-occurrence
matrix and use its value to update the parameters of the model2. Run the training procedure
over  the  entire  matrix  for  100 epochs ,  and  plot  the  value  of  the  cost  function  during
training.

iii. Visualize the resulting word vectors,  using the procedure visualize(), by projecting them on
the plane defined by their two principal components.  (As mentioned in the paper,  create

the final word vectors by summing  the resulting word and context-word matrices W +
~
W ).

iv. Read about Simlex-999.  This is a dataset that contains word pairs and the similarity scores
humans assigned to them. E.g., one pair of words is “bad” and “awful”, and the similarity
score is 8.42. The notebook contains code for loading the simlex-999 data. Do the word
embeddings we  calculated reflect human notion of similarity? Plot the simlex-similarity
between each pair (w1, w2) and the  cosine similarity of the corresponding word vectors.
What is the Pearson correlation between the two? Why do we not get perfect correlation?

1  Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global Vectors for Word Representation. 

In EMNLP (Vol. 14, pp. 1532-43).

2  Set the weighting function as in the paper - Eqn. (9): xmax=100 , α=0.75.

https://colab.research.google.com/drive/1OkSgQQa-V2f8HhjV7i_uGZSCcDgJTq5u
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html
https://fh295.github.io/simlex.html

